Applied Machine Learning

Convolutional Neural Networks

Oumar Kaba

Admin

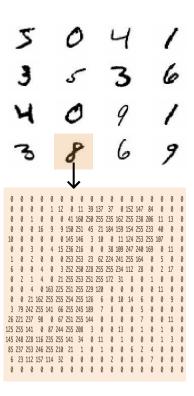
- Exam grading
- Quizz
- Assignment 3

Learning objectives

understand the convolution layer and the architecture of Conv-net

- its inductive bias
- its derivation from fully connected layer
- variations of convolution layer

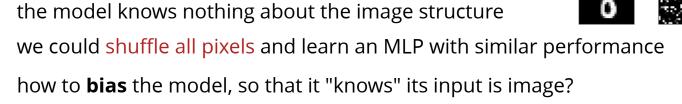
MLP and image data



we can apply an MLP to image data

image is like 2D version of sequence data

first vectorize the input $x o ext{vec}(x) \in \mathbb{R}^{784}$ feed it to the MLP (with L layers) and predict the labels $ext{softmax} \circ W^{\{L\}} \circ \ldots \circ ext{ReLU} \circ W^{\{1\}} ext{vect}(x)$

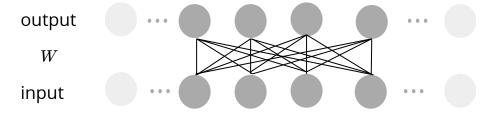


let's find the right model for sequence first!

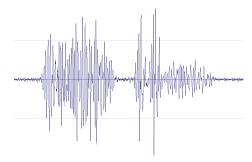
Parameter-sharing

suppose we want to convert one sequence to another $\mathbb{R}^D o \mathbb{R}^D$ suppose we have a dataset of input-output pairs $\{(x^{(n)},y^{(n)})\}_n$

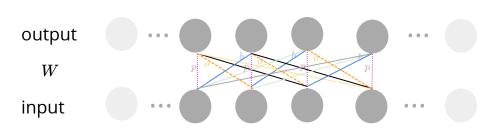
consider only a single layer y = g(Wx)



example: remove background noise from audio signal



we may assume, each output unit is the same function shifted along the sequence



when is this a good assumption?

elements of w of the same color are tied together (parameter-sharing)

Locality & sparse weight

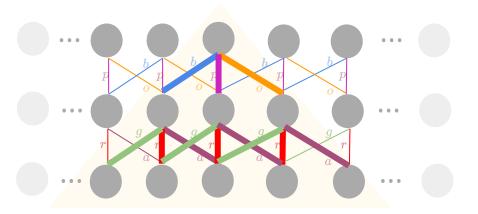
we may further assume each output is a **local** function of input

larger **receptive field** with multiple layers

one layer: the output units "see" 3 neighbouring inputs

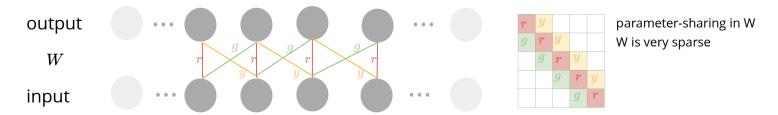
two layers: the output units "see" 5 neighbouring inputs

...



Cross-correlation (1D)

Let's look at the parameter matrix W



instead of the whole matrix we can keep the one set of nonzero values

$$w = [w_1, \ldots, w_K] = [W_{c,c-\lfloor rac{K}{2}
floor}, \ldots, W_{c,c+\lfloor rac{K}{2}
floor}] o g$$

we can write matrix multiplication as **cross-correlation** of w and x

$$y_c = gig(\sum_{d=1}^D W_{c,d} x_dig) = gig(\sum_{k=1}^K w_k x_{c-\lfloor rac{K}{2}
floor + k}ig)$$

feedforward layer: slide

on the input, calculate inner product and apply the nonlinearity

Convolution (1D)

Cross-correlation is similar to convolution

Cross-correlation
$$y_d = \sum_{k=-\infty}^\infty w_k x_{d+k}$$

w is called the filter or kernel

ignoring the activation (for simpler notation) assuming w and x are zero for any index outside the input and filter bound

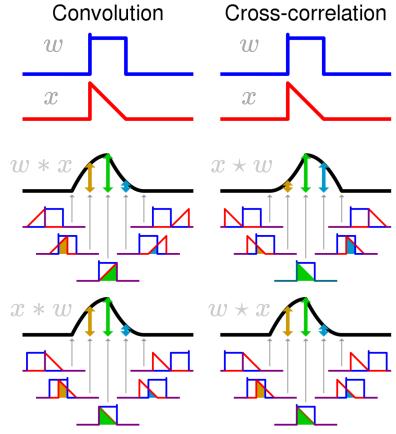
Convolution flips w or x (to be commutative)

$$y_d = \sum_{k=-\infty}^\infty w_k x_{d-k} = \sum_{k'=-\infty}^\infty w_{d-k'} x_{k'}$$

$$w*x$$
 change of variable $x*w$

since we **learn** w, flipping it makes no difference in practice, we use cross correlation rather than convolution convolution is equivariant wrt translation

-- i.e., shifting **x**, shifts **w*x**



Convolution (1D)

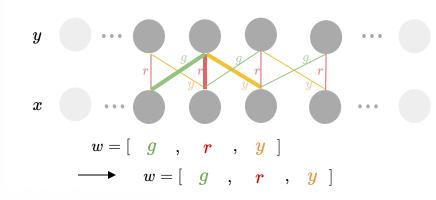
1D convolution layer **so far**...

$$y_d = \sum_{k=1}^K w_k x_{d+k-1}$$

-1 is because the indexing starts from 1 for d=1,k=1 we index the first element of x

```
1 def Conv1D(
2    x, # D (length)
3    w, # K (filter length)
4    ):
5
6    D, = x.shape
7    K, = w.shape
8    Dp = D - K + 1 #output length
9    y = np.zeros(Dp)
10    for dp in range(Dp):
11        y[dp] = np.sum(x[dp:dp+K] * w)
12    return y
```

Input



Example:

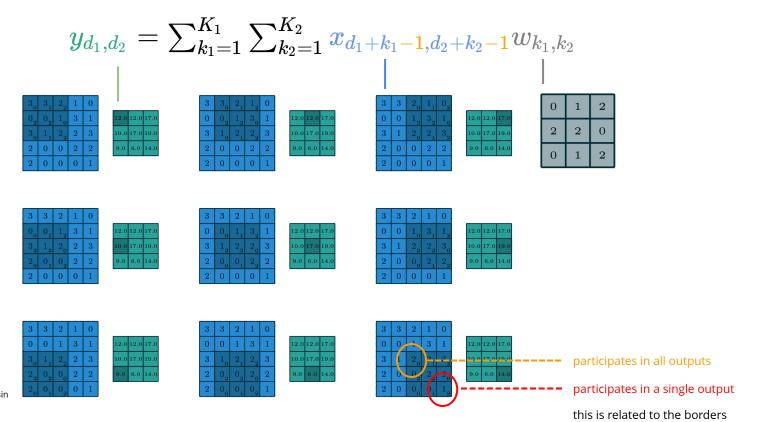
0 1 2 3 4 5 6 * 1 2 = 2 5

Kernel

Output

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (i.e. image data)



Convolution (2D)

there are different ways of handling the borders

zero-pad the input, and produce all non-zero outputs (full) the output is larger than the input

$$D+2 imes \mathrm{padding}-K+1$$

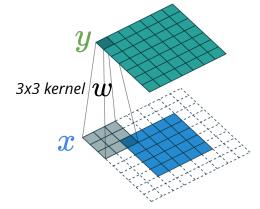
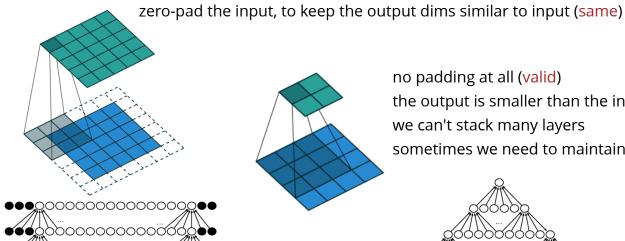
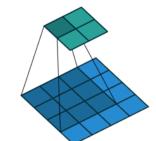
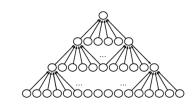


image credit: Vincent Dumoulin, Francesco Visin





no padding at all (valid) the output is smaller than the input we can't stack many layers sometimes we need to maintain the width



Pooling

sometimes we would like to reduce the size of output e.g., from D x D to D/2 x D/2

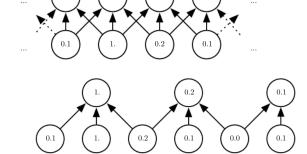
a combination of pooling and downsampling is used

- 1. calculate the output $ilde{y}_d = gig(\sum_{k=1}^K x_{d+k-1} w_kig)$
- 2. aggregate the output over different regions

$$y_d = \operatorname{pool}\{\tilde{y}_d, \dots, \tilde{y}_{d+p}\}$$

two common aggregation functions are **max** and **mean**

3. often this is followed by subsampling using the same step size



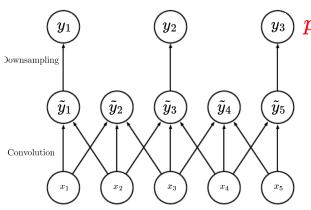
the same idea extends to higher dimensions

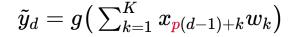
12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

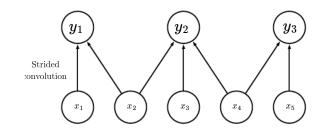
Strided convolution

alternatively we can directly subsample the output

$$egin{aligned} ilde{y}_d &= gig(\sum_{k=1}^K x_{(d-1)+k} w_kig) \ y_d &= ilde{y}_{oldsymbol{p}(d-1)+1} \end{aligned}$$





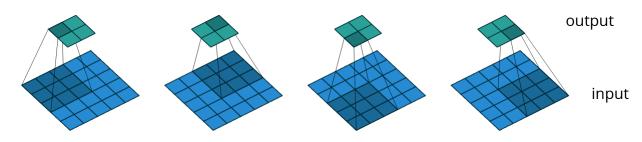


Strided convolution

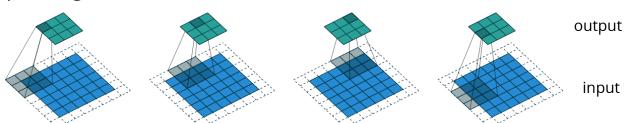
the same idea extends to higher dimensions

$$y_{d_1,d_2} = \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} x_{p_1(d_1-1)+k_1,p_2(d_2-1)+k_2} w_{k_1,k_2}$$

different strides for different dimensions



with padding



output length (for one dimension) $\lfloor rac{D+2 imes \mathrm{padding}-K}{\mathrm{stride}} + 1
floor$

Channels

so far we assumed a single input and output sequence or image



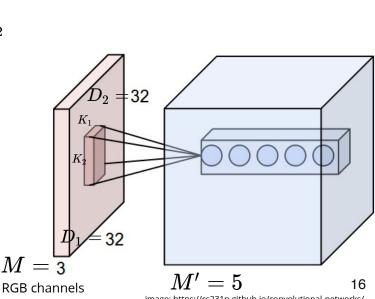
image: Dumoulin & Visin'16

Channels

we can also add a bias parameter (b), one per each output channel

$$y_{m',d_1,d_2} = gig(\sum_{m=1}^{M} \sum_{k_1} \sum_{k_2} w_{m,m',k_1,k_2} \ x_{m,d_1+k_1-1,d_2+k_2-1} + b_{m'} ig) \ y \in \mathbb{R}^{M' imes D_1' imes D_2'}$$

 $w \in \mathbb{R}^{M imes M' imes K_1 imes K_2}$



 $b \in \mathbb{R}^{M'}$

Example

https://cs231n.github.io/assets/conv-demo/

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers it could be applied to 1D sequence, 2D image or 3D volumetric data **example:** conv-net architecture (LeNet, 1998) for digits recognition

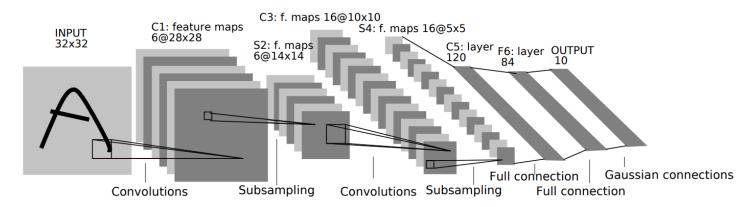
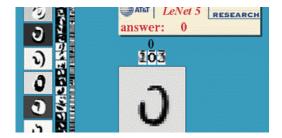


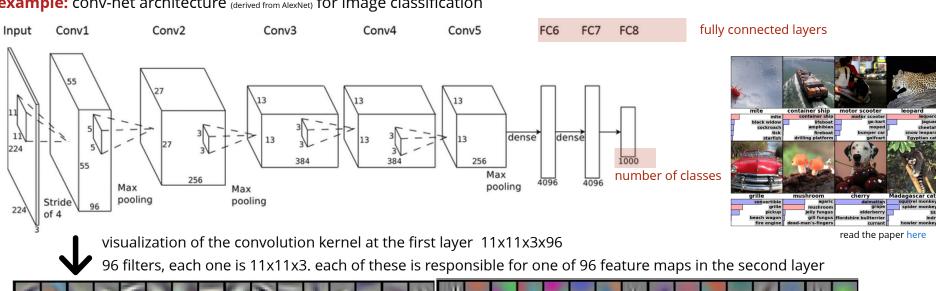
image from LeNet paper



very accurate to be used in large scale in postal services (zip code recognition) and banks (cheques)

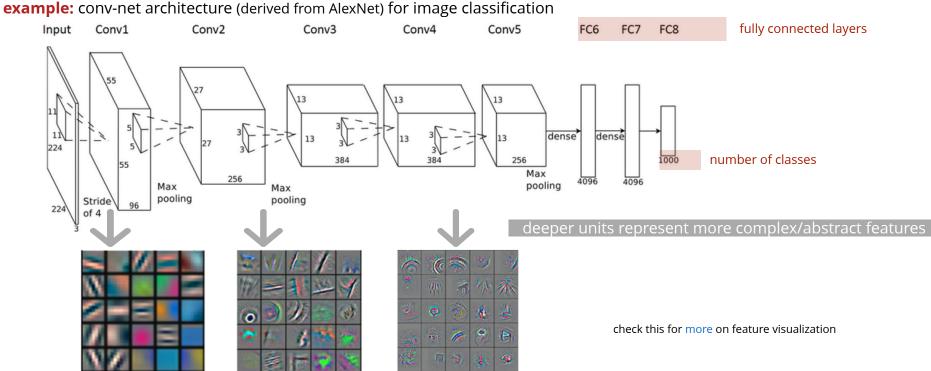
Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers it could be applied to 1D sequence, 2D image or 3D volumetric data **example:** conv-net architecture (derived from AlexNet) for image classification



Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP) it could be applied to 1D sequence, 2D image or 3D volumetric data



Application: image classification

Convnets have achieved super-human performance in image classification ImageNet challenge: > 1M images, 1000 classes

GT: horse cart

- 1: horse cart
- 2: minibus
- 3: oxcart
- 4: stretcher
- 5: half track

GT: coucal

- 2: indigo bunting
- 3: lorikeet
- 4: walking stick
- 5: custard apple

GT: birdhouse

- 1: birdhouse
- 2: sliding door 3: window screen
- 4: mailbox
- 5: pot

GT: komondor

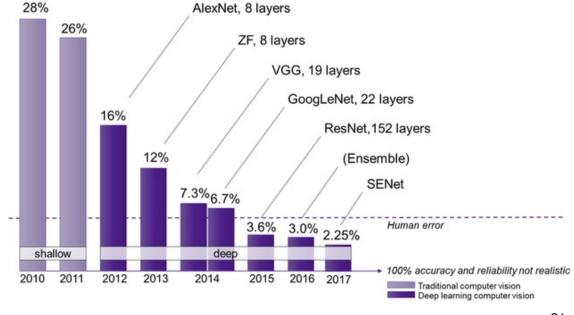
- 1: komondor
- 2: patio
- 3: Ilama
- 4: mobile home
- 5: Old English sheepdog

GT: forklift

- 1: forklift
- 2: garbage truck
- 3: tow truck
- 4: trailer truck
- 5: go-kart

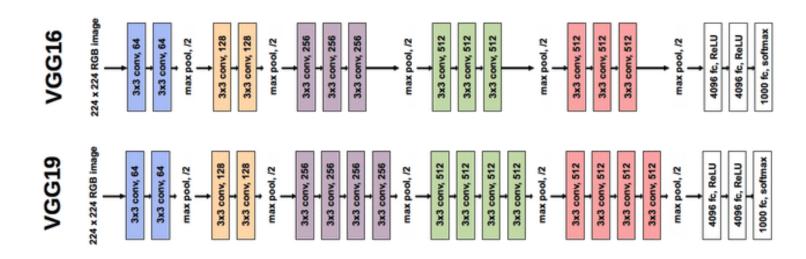
GT: yellow lady's slipper

- 1: yellow lady's slipper
- 2: slug
- 3: hen-of-the-woods
- 4: stinkhorn 5: coral fungus



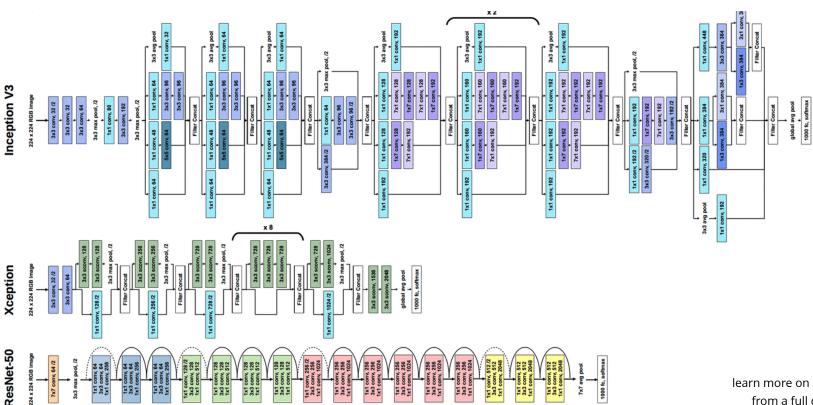
Application: image classification

variety of increasingly deeper architectures have been proposed

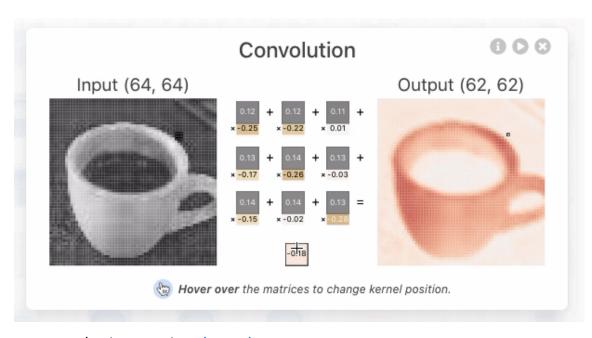


Application: image classification

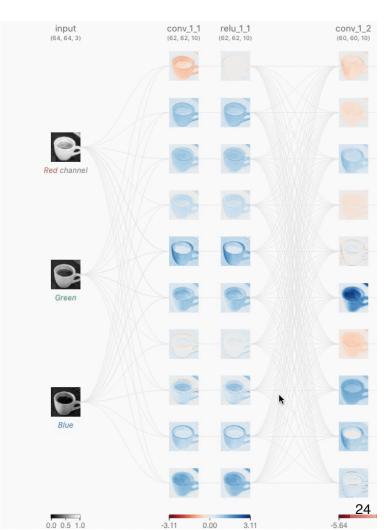
variety of increasingly deeper architectures have been proposed



Visual Examples



see the interactive demo here



Training: backpropagation through convolution

consider the 1D convolution op. $y_d=\sum_k w_k x_{d+k-1}$ using backprop. we have $rac{\partial J}{\partial y_d}$ so far and we need

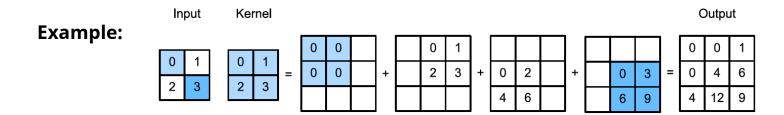
1)
$$\frac{\partial J}{\partial w_k} = \sum_{d'} \frac{\partial J}{\partial y_{d'}} \frac{\frac{\partial J}{\partial y_{d'}}}{\frac{\partial w_k}{\partial w_k}}$$
 using this we can update the convolution kernel at the current layer

2) to backpropagate to previous layer
$$\frac{\partial J}{\partial x_d} = \sum_{d'} \frac{\partial J}{\partial y_{d'}} \frac{\partial y_{d'}}{\partial x_d} \frac{w_{d-d'+1}}{\partial x_d}$$

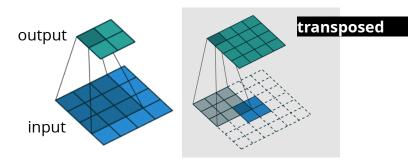
even when we have stride, and padding, this operation is similar to multiplication by transpose of the parameter-sharing matrix (**transposed convolution**)

Transposed convolution

Transposed convolution produces a larger output from a smaller input

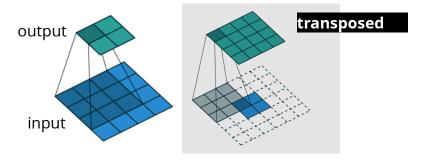


Transposed convolution can recover the shape of the original input no padding of the original convolution corresponds to *full* padding of in transposed version

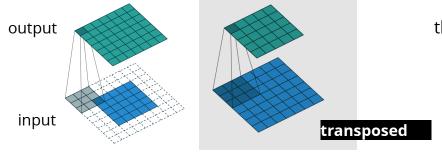


Transposed convolution

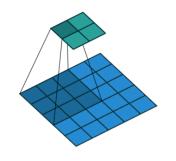
Transposed convolution recovers the shape of the original input no padding of the original convolution corresponds to *full* padding of in transposed version

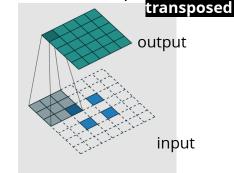


full padding of the original convolution corresponds to no padding of in transposed version



Convolution with stride and its transpose





this can be used for up-sampling (opposite of stride/pooling)

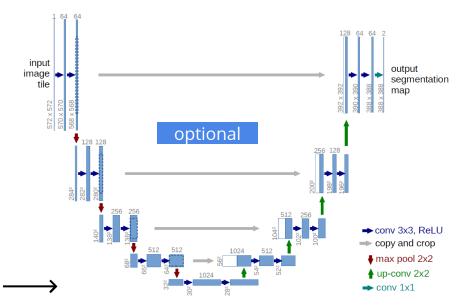
as expected the transpose of a transposed convolution is the original convolution

Solving other discriminative vision tasks with CNNs

Structured Prediction: the output itself may have (image) structure (e.g., predicting text, audio, image)

example

in (semantic) segmentation, we classify each pixel loss is the sum of cross-entropy loss across the whole image



variety of architectures... one that performs well is **U-Net**

transposed convolution (upconv), concatenation, and skip connection are common in architecture design architecture search (i.e., combinatorial hyper-parameter search) is an expensive process and an active research area

Generating images by inverting CNNs

generating images which maximize the class label

$$p(x|y) \propto p(x) p(y|x)$$

$$x_{t+1} = x_t + \epsilon_1 rac{\partial \log p(x_t)}{\partial x_t} + \epsilon_2 rac{\partial \log p(y=c|x_t)}{\partial x_t} + \mathcal{N}(0,\epsilon_3^2oldsymbol{I})$$

e.g. using Gaussian prior we have:

$$x_{t+1} = (1 - \epsilon_1) x_t + rac{\partial \log p(y = c | x_t)}{\partial x_t}$$
 gradients

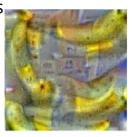
Images that maximize the probability of ImageNet classes "goose" and "ostrich"

goose

ostrich

e.g. using *Total variation (TV)* prior gives more realistic

Anemone Fish

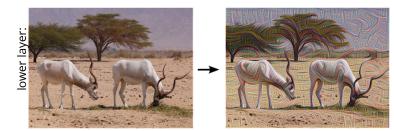


Banana

Screw

Generating images by inverting CNNs

- Deep Dream
 - generate versions of an input image that emphasize certain features by picking a layer and ask the network to enhance whatever it detected



read more here

- Neural style transfer
 - specify a reference "style image" xs and "content image" xc.

Summary

convolution layer introduces an inductive bias (equivariance) to MLP

- translation of the same model is applied to produce different outputs (pixels)
- the layer is equivariant to **translation**
- achieved through parameter-sharing

conv-nets use combinations of

- convolution layers
- ReLU (or similar) activations
- pooling and/or stride for down-sampling
- skip-connection and/or batch-norm to help with optimization / regularization
- potentially fully connected layers in the end

training

- backpropagation (similar to MLP)
- SGD or its improved variations with adaptive learning rate
- monitor the validation error for early stopping