
Applied Machine Learning
Convolutional Neural Networks

Oumar Kaba

COMP 551 (fall 2025) 1

Admin
Exam grading
Quizz
Assignment 3

2

understand the convolution layer and the architecture of Conv-net

its inductive bias
its derivation from fully connected layer
variations of convolution layer

Learning objectives

3

MLP and image data

we can apply an MLP to image data

image:https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4
Novel applications of Convolutional Neural Networks in the age of Transformers, Scientific report, 2024

softmax ∘W ∘{L} …∘ReLU ∘W vect(x){1}

first vectorize the input x→ vec(x) ∈ R784

feed it to the MLP (with L layers) and predict the labels

the model knows nothing about the image structure

we could shuffle all pixels and learn an MLP with similar performance

let's find the right model for sequence first!

how to bias the model, so that it "knows" its input is image?

image is like 2D version of sequence data

4

Parameter-sharing
suppose we want to convert one sequence to another R →D RD

suppose we have a dataset of input-output pairs {(x , y)}(n) (n)
n

example: remove background
noise from audio signal

consider only a single layer y = g(Wx)

W

...

...output

...

...

input

5

we may assume, each output unit is the same function shifted along the sequence
when is this a good assumption?

W

...

...output

...

...

input

elements of w of the same color are tied together
(parameter-sharing)p p p po o ob b b

Locality & sparse weight
we may further assume each output is a local function of input

larger receptive field with multiple layers

...

...

...

...

6

one layer: the output units "see" 3 neighbouring inputs

......

two layers: the output units "see" 5 neighbouring inputs
...

b b b b

o o o o

p p p p p

g g g g

a a a a

r r r r r

Cross-correlation (1D)

Let's look at the parameter matrix W

W

...

...output

7

...

...

input

parameter-sharing in W
W is very sparse

= g(w x)∑k=1
K

k c−⌊ ⌋+k2
K

instead of the whole matrix we can keep the one set of nonzero values

w = [w ,… ,w] =1 K [W ,… ,W]c,c−⌊ ⌋2
K c,c+⌊ ⌋2

K

y =c g(W x)∑d=1
D

c,d d

we can write matrix multiplication as cross-correlation of w and x

slide on the input, calculate inner product and apply the nonlinearityfeedforward layer:

g g g

y y y
r r r r

g

g

g

y

y

y

r

r

r

r

r

y

g

g

g

y

y

y

r

r

r

rg

g r y

w

x

w ⋆ x

x ⋆ w

w

x

w ∗ x

x ∗ w

Convolution (1D)
Cross-correlation is similar to convolution

y =d w x∑k=−∞
∞

k d−k

flips w or x (to be commutative)Convolution

w ∗ x x ∗ w

8

= w x∑k =−∞′
∞

d−k′ k′

change of variable
k =′ d− k

since we learn w, flipping it makes no difference
in practice, we use cross correlation rather than convolution
convolution is equivariant wrt translation
 -- i.e., shifting x, shifts w*x

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

Cross-correlation y =d w x∑k=−∞
∞

k d+k

w is called the filter or kernel

w ⋆ x

Convolution (1D)

1D convolution layer so far...

y =d w x∑k=1
K

k d+k−1
-1 is because the indexing starts from 1
for d=1,k=1 we index the first element of x

def Conv1D(
 x, # D (length)
 w, # K (filter length)
):

 D, = x.shape
 K, = w.shape
 Dp = D - K + 1 #output length
 y = np.zeros(Dp)
 for dp in range(Dp):
 y[dp] = np.sum(x[dp:dp+K] * w)
 return y

1
2
3
4
5
6
7
8
9
10
11
12

......x

g g g

y y y
r r r r

......y

9

w = [g r y], ,

w = [g r y], ,

Example:

Convolution (2D)
 similar idea of parameter-sharing and locality extends to 2 dimension (i.e. image data)

image credit: Vincent
Dumoulin, Francesco Visin

y =d ,d1 2 x w∑k =11

K1 ∑k =12

K2
d +k −1,d +k −11 1 2 2 k ,k1 2

participates in all outputs

participates in a single output

this is related to the borders
10

Convolution (2D)

image credit: Vincent Dumoulin, Francesco Visin

there are different ways of handling the borders

zero-pad the input, and produce all non-zero outputs (full)
the output is larger than the input

3x3 kernel

x

y

w

zero-pad the input, to keep the output dims similar to input (same)

no padding at all (valid)
the output is smaller than the input
we can't stack many layers
sometimes we need to maintain the width

D + 2 × padding −K + 1

output length (for one dimension)

11

Pooling

sometimes we would like to reduce the size of output e.g., from D x D to D/2 x D/2

=y~d g(x w)∑k=1
K

d+k−1 k1. calculate the output

a combination of pooling and downsampling is used

2. aggregate the output over different regions

two common aggregation functions are max and mean

y =d pool{ ,… , }y~d y~d+p

3. often this is followed by subsampling using the same step size

the same idea extends to higher dimensions

12

Strided convolution

alternatively we can directly subsample the output

=y~d g(x w)∑k=1
K

(d−1)+k k

y =d y~p(d−1)+1

y~1 y~2 y~3y~3 y~4 y~5

y1 y2 y3

=y~d g(x w)∑k=1
K

p(d−1)+k k

y1 y2 y3

13

equivalent to

p = 2

Strided convolution

the same idea extends to higher dimensions

image: Dumoulin & Visin'16

output

input

y =d ,d1 2 x w∑k =11

K1 ∑k =12

K2
p (d −1)+k ,p (d −1)+k1 1 1 2 2 2 k ,k1 2

different strides for different dimensions

output

input

with padding

⌊ +stride
D+2×padding−K 1⌋

output length (for one dimension)

14

Channels
so far we assumed a single input and output sequence or image

with RGB data, we have 3 input channels ()M = 3

this example: 2 input channels

x ∈ RM×D ×D1 2

similarly we can produce multiple output channels M =′ 3

y ∈ RM ×D ×D′
1
′

2
′

we have one filters per input-output channel combinationK ×1 K2 w ∈ RM×M ×K ×K′
1 2

+ add the result of convolution from different input channels

image: Dumoulin & Visin'16
15

Channels

M =
M =′ 5

D =1

D =2
K1

K2

RGB channels
image: https://cs231n.github.io/convolutional-networks/

y =m ,d ,d′ 1 2 g(w x +∑m=1
M ∑k1

∑k2 m,m ,k ,k′ 1 2 m,d +k −1,d +k −11 1 2 2 b)m′

w ∈ RM×M ×K ×K′
1 2

x ∈ RM×D ×D1 2

y ∈ RM ×D ×D′
1
′

2
′

we can also add a bias parameter (b), one per each output channel

16

b ∈ RM ′

https://cs231n.github.io/assets/conv-demo/

demo from: https://cs231n.github.io/convolutional-networks/

Example

... 17

https://cs231n.github.io/assets/conv-demo/
https://cs231n.github.io/convolutional-networks/

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers

example: conv-net architecture (LeNet, 1998) for digits recognition
it could be applied to 1D sequence, 2D image or 3D volumetric data

image from LeNet paper

very accurate to be used in large scale in postal
services (zip code recognition) and banks (cheques)

18

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers

example: conv-net architecture (derived from AlexNet) for image classification

fully connected layers

number of classes

it could be applied to 1D sequence, 2D image or 3D volumetric data

visualization of the convolution kernel at the first layer 11x11x3x96
96 filters, each one is 11x11x3. each of these is responsible for one of 96 feature maps in the second layer

read the paper here

19

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

example: conv-net architecture (derived from AlexNet) for image classification
fully connected layers

number of classes

it could be applied to 1D sequence, 2D image or 3D volumetric data

deeper units represent more complex/abstract features

check this for on feature visualization more

20

https://distill.pub/2017/feature-visualization/

Application: image classification

Convnets have achieved super-human performance in image classification

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

ImageNet challenge: > 1M images, 1000 classes

optional

21

Application: image classification
variety of increasingly deeper architectures have been proposed

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

optional

22

Application: image classification
variety of increasingly deeper architectures have been proposed

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

learn more on different CNN
from a full course on CNN:
http://cs231n.stanford.edu/

here

optional

23

https://www.youtube.com/watch?v=DAOcjicFr1Y

see the interactive demo here

Visual Examples

24

https://poloclub.github.io/cnn-explainer/

Training: backpropagation through convolution

y =d w x∑k k d+k−1

using backprop. we have so far and we need
 ∂yd

∂J

consider the 1D convolution op.

=∂xd
∂J ∑d′ ∂yd′

∂J
∂xd
∂yd′to backpropagate to previous layer2)

even when we have stride, and padding, this operation is similar to multiplication by
transpose of the parameter-sharing matrix (transposed convolution)

wd−d +1′

optional

xd +k−1′

=∂wk

∂J ∑d′ ∂yd′
∂J

∂wk

∂yd′1) using this we can update the convolution kernel at the current layer

25

Transposed convolution

Transposed convolution can recover the shape of the original input

image: Dumoulin & Visin'16

no padding of the original convolution corresponds to full padding of in transposed version

transposed

input

output

optional

Transposed convolution produces a larger output from a smaller input

Example:

26

Transposed convolution

Transposed convolution recovers the shape of the original input

this can be used for up-sampling (opposite of stride/pooling)

as expected the transpose of a transposed
convolution is the original convolution

image: Dumoulin & Visin'16

no padding of the original convolution corresponds to full padding of in transposed version

transposed

input

output

27

Convolution with stride and its transpose
transposed

input

output

full padding of the original convolution corresponds to no
padding of in transposed version

input

output

transposed

optional

variety of architectures... one that performs well is U-Net

Solving other discriminative vision tasks with CNNs

transposed convolution (upconv), concatenation, and skip connection are common in architecture design

image:https://sthalles.github.io/deep_segmentation_network/

architecture search (i.e., combinatorial hyper-parameter search) is an expensive process and an active research area

Structured Prediction: the output itself may have (image) structure (e.g., predicting text, audio, image)

in (semantic) segmentation, we classify each pixel
loss is the sum of cross-entropy loss across the whole image

example

optional

optional

28

Generating images by inverting CNNs

optional

p(x∣y) ∝ p(x)p(y∣x)

CNN

x =t+1 x +t ϵ +1 ∂xt
∂ log p(x)t ϵ +2 ∂xt

∂ log p(y=c∣x)t N (0, ϵ I)3
2

e.g. using Gaussian prior we have:

x =t+1 (1 − ϵ)x +1 t ∂xt
∂ log p(y=c∣x)t

gradients

Images that maximize the
probability of ImageNet

classes “goose” and “ostrich”

e.g. using Total variation (TV) prior gives more realistic
images

generating images which maximize the class label

29

Generating images by inverting CNNs

Deep Dream
generate versions of an input
image that emphasize certain
features by picking a layer and
ask the network to enhance
whatever it detected

optional

lo
w

er
 la

ye
r:

10
 it

er
at

io
n

50
 it

er
at

io
n

read more here

Neural style transfer
specify a reference “style image”
xs and “content image” xc.

30

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Summary
 convolution layer introduces an inductive bias (equivariance) to MLP

translation of the same model is applied to produce different outputs (pixels)
the layer is equivariant to translation
achieved through parameter-sharing

conv-nets use combinations of

convolution layers
ReLU (or similar) activations
pooling and/or stride for down-sampling
skip-connection and/or batch-norm to help with optimization / regularization
potentially fully connected layers in the end

training

backpropagation (similar to MLP)
SGD or its improved variations with adaptive learning rate
monitor the validation error for early stopping 31

